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Air temperature distribution over Mongolia using dynamical
downscaling and statistical correction
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ABSTRACT: In this study, dynamical downscaling was performed using the Weather Research and Forecast (WRF)
model to attain fine-resolution gridded meteorological information capable of reflecting Mongolia’s complex topographical
effect. Mongolia’s sparse station network, with an average inter-station distance 107 km, is incapable of representing the
spatial distribution of climate variables, such as temperature, over the country’s complex topography. In order to reproduce
fine-scale air temperature in Mongolia, the National Centers for Environmental Prediction/National Center for Atmospheric
Research reanalysis II data with 6-h intervals from 1981 to 2010 were used as the initial and boundary conditions of the
WRF model. A one-way nesting system was applied for two nested domains with horizontal grid spaces of 60 and 20 km.
For correction of the systematic biases induced by dynamical downscaling, a statistical correction method was used for
the downscaled results simulated by the WRF model. The bias was divided into two parts: the mean and the perturbation.
The former was corrected by using a weighting function and a temperature inversion, and the latter by using the self-
organizing maps method. In the former correction, the temperature inversion, characterized by an inverted lapse rate, in
which temperature increases with increasing height in the lower atmosphere, was considered only when the temperature
inversion occurred. According to our result, the domain-averaged Root Mean Square Difference of the model-simulated
annual mean temperature was decreased from 3.7 ◦C to 2.1 ◦C after the statistical and temperature inversion corrections.
On the basis of our study, we suggested that the area-averaged, fine-resolution, annual mean temperature of Mongolia was
1.1 ◦C (station mean temperature 0.5 ◦C). Our correction method improves not only spatial patterns with fine resolution
but also the time-varying temperature variance over Mongolia.
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1. Introduction

Mongolia has more than 130 sparsely located meteoro-
logical stations. This sparse station network limits the
possibility of obtaining the quantity of the fine-resolution
weather and climate information of Mongolia.

The general circulation model (GCM), focusing on
the global scale with coarse horizontal resolution, can
be used to produce and reproduce weather and climate
information (Meehl, 1995). However, with the horizon-
tal scale, regional and local details influenced by spa-
tial heterogeneities in the regional physiography can be
lost in the GCM simulation. GCMs are, therefore, inher-
ently unable to represent local subgrid-scale features and
dynamics, such as local topographical characteristics and
processes. Nevertheless, various statistical downscaling
techniques are available to convert GCM outputs into
local variables, which are appropriate for applications
since local meteorological conditions are largely related
to large-scale meteorology. The most widely used sta-
tistical downscaling tools usually apply linear methods,
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such as local scaling, multiple linear regression, canoni-
cal correlation analysis and singular value decomposition
(Conway et al., 1996; Henrik et al., 1999; Coulibaly et al.,
2005; Sun and Chen, 2012).

Dynamically sophisticated methods that convert GCM
output into regional meteorological variables using reli-
able regional climate model (RCM) are usually referred
to as dynamical downscaling techniques. The downscal-
ing based on the RCM simulation with nesting system is
used to attain relatively fine horizontal resolution infor-
mation of the order of tens kilometres or less over the
selected domain of interest (e.g., Gomboluudev et al.,
2005; Im et al., 2008; Altangerel et al., 2011).

Although RCM can provide weather and climate
information on a fine-scale in the area of interest, the
model result contains errors and biases related due to
incompleteness of the current model and modelling tech-
nique, lack of understanding of the complex nature of the
earth system (Lorenz, 1963), the uncertainties in initial
conditions, model physics and parameterizations, etc.

Therefore, various statistical correction techniques
based on Model Output Statistic (Wilks, 1995) are largely
used to remove systematic and non-systematic biases in
the model results using both linear (e.g., Ahn et al.,
2002; Wood et al., 2004; Déqué et al., 2007; Fischer and
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Schär, 2010; Amengual et al., 2012) and nonlinear (e.g.,
Xu, 1999; Schoof and Pryor, 2001; Ahn et al., 2012)
methods.

Ahn et al. (2012) used dynamical downscaling and
statistical correction to remove the systematic biases
from simulated results by dividing them into mean
and perturbation parts. A self-organizing map (SOM)
was firstly used to correct the perturbation part of the
temperature bias (Ahn et al., 2012).

In this study, the distribution of monthly temperature
in Mongolia was reconstructed using dynamical down-
scaling with a horizontal resolution of 20 × 20 km and a
statistical correction method for the removal of system-
atic biases in the downscaled results by dividing them
into mean and perturbation parts. The effect of tempera-
ture inversion frequently occurring over Mongolia during
winter was also corrected using a temperature inversion
correction method developed in this study.

In Section 3, we explain the data used and the study
methods. Section 4 compares the observation and down-
scaled results with and without statistical correction. The
discussions and conclusions are presented in Section 5.

2. Temperature inversion features in Mongolia

Under general atmospheric condition, air temperature
decreases with increasing height in the lower tropo-
sphere. However, inversions are sometimes created due
to several reasons such as radiative cooling at the lower
layer, subsidence adiabatic heating at the upper layer,
and advections of warm air over cooler air or of cool
air under warmer air. In short, the main conditions for
the inversion are largely governed by advection and/or
radiative cooling. Outgoing radiation, especially during

clear winter nights, cools the land surface, which in
turn cools the lowermost surface layers, creating surface
inversion of a few meters to a few kilometres thick.
Topography can also play a role in creating a temperature
inversion since it can sometimes cause cold air to flow
down into valleys from mountain ranges. The cold air
flowing down to the valley smuggles into the warmer air
lifting it from the surface of the valley, thus creating the
inversion. In Mongolia, the inversion is mainly created
by the mechanism of the radiative cooling and the effect
of mountains during winter (Erdensukh, 2008).

There are three major mountain ranges in Mongo-
lia (Figure 1). Altai Mountains, the highest stretches
across the western and southwestern regions of the coun-
try extended southeast from northwest direction. The
Khangai Mountains, also lying in the same direction,
occupy much of central and north-central Mongolia. The
Khentei Mountains are located near the Russian border,
to the northeast of Ulaanbaatar. A large part of eastern
Mongolia is occupied by plains. The lowest area is a
depression extending in a southwest-to-northeast direc-
tion. The depression extends from the Gobi Desert region
in the south to the eastern frontier and contains six lakes
bounded by the Altai in the west, and Khangai in the east
and north, called the Great Lakes Depression (area (a) in
Figure 1). Tes (area (b) in Figure 1) is a river in North-
western Mongolia and southern Tuva in Russia. The river
flows through Mongolia and Russia, returning to Mon-
golia before entering Uvs Lake (Figure 1) located in the
northwest of Mongolia. The lake is the largest lake in
the country. Selenge (area (c) in Figure 1), a major river
in Mongolia, is located in the northern part of Mongolia
originated northwest of the Khangai Mountains to Baikal
Lake. Several rivers including Orkhon Tuul and Chuluut
Eg merge into Selenge River.

Figure 1. Location of meteorological and radiosonde stations. Black dots are meteorological stations in Mongolia. Westward ( ) and eastward
( ) directed triangles are Chinese and Russian stations respectively, and circled dots are radiosonde stations. Shading indicates elevation (unit:

meter). Rectangular areas of (a), (b) and (c) correspond to Great Lakes Depression, Tes river basin and Selenge river basin, respectively.
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Table 1. Monthly mean temperature inversion amount and depth observed at radiosonde stations.

WMO ID Parameter October November December January February March

44277 Inversion (◦C) 1.0 0.8 1.6 1.1
Depth (m) 863.5 833.0 814.0 807.4

44288 Inversion (◦C)
Depth (m)

44373 Inversion (◦C) 0.8 1.4 1.7 0.5
Depth (m) 533.6 521.1 507.5 500.6

44231 Inversion (◦C) 0.2 0.6 4.0 5.3 2.0 0.1
Depth (m) 226.4 598.7 687.3 677.9 673.1 204.1

44259 Inversion (◦C) 0.8 1.5 2.9 3.0 1.4 0.1
Depth (m) 261.5 264.0 696.4 675.1 241.8 242.8

44212 Inversion (◦C) 8.6 13.0 10.3 5.5
Depth (m) 1879.0 2037.0 1865.0 897.1

44292 Inversion (◦C) 0.0 0.4 2.9 3.2 1.3
Depth (m) 201.8 661.1 649.2 638.5 641.2

The monthly mean temperature inversion observed
from radiosonde stations is given in Table 1. It shows that
the inversion took place from October to the following
March in Mongolia, with no inversion in the other
months. The largest amount of the inversion was 13.0 ◦C
and the deepest depth was 2037 m, observed at Ulaangom
station in January. The weakest inversion occurred at
Arvaikheer station. The region of the deepest and largest
inversion is surrounded by the major mountains, near the
Uvs Lake.

In order to compare the observed inversion with
the simulated results, vertical profiles of monthly
mean winter temperature at Ulaangom and Arvaikheer
stations where the deepest and weakest inversions were
observed, respectively, are shown in Figures 2 and 3.
In both temperature profiles, the observed and simulated
profiles show temperature inversion during winter but
the amount of the inversion differs near surface. The

Figure 2. Monthly mean temperature profile in winter and summer,
averaged over 1981–2010. Solid line is observation at Ulaangom
station (WMO ID 44212). Dashed line indicates simulated temperature

nearest to the station.

Figure 3. Monthly mean temperature profile in winter and summer,
averaged over 1981–2010. Solid line is observation at Arvaikheer
station (WMO ID 44288). Dashed line indicates simulated temperature

nearest to the station.

temperature inversion simulated by Weather Research
and Forecast (WRF) is weaker than the observation. On
the other hand, as shown in Figures 2 and 3, there are no
inversions throughout the summer and WRF simulates
the vertical profile of temperature reasonably well, as in
the observation.

The distribution of monthly temperature inversion
over Mongolia from Erdenesukh (2008) was regridded,
as shown in Figure 4. The largest temperature inversion
occurred within the Great Lakes Depression located
in between the Altai and Khangai mountain ranges,
along the Tes and Selenge river basins. According to
the inversion pattern, a relatively large inversion occurs
along the Tes river valley in November but a weaker
inversion occurs in the Great Lakes Depression due
to effect of the lakes. After the lakes are frozen, the
deepest inversion in the Great Lakes Depression is
maintained until it decays in March. Moreover, as shown
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Figure 4. Monthly mean temperature inversion pattern in January from
Erdenesukh (2008), which is regridded for the domain (Unit: ◦C).
Rectangular areas of (a), (b) and (c) correspond to Great Lakes

Depression, Tes river basin and Selenge river basin, respectively.

in Figure 4, temperature inversion can occur in the other
regions of Mongolia except the high mountain areas. In
this study, the inversion distribution made by Erdensukh
(2008), referred to as ‘inversion correction’, was used
for a surface air temperature correction.

3. Data and method

3.1. Data

The National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/
NCAR) reanalysis II on a 2.5 × 2.5 grid from 1981 to
2010 was used to generate the initial and boundary con-
ditions of the WRF model simulation.

The first nested domain for dynamical downscaling
extended from 2◦S to 67◦N and from 51◦E to 157◦E
with a horizontal resolution of 60 × 60 kilometre, and
the second domain covered from 85◦E to 121◦E and from
39◦N to 57◦N with a horizontal resolution of 20 × 20 km
(Figure 5). The second nested domain containing Mon-
golia was the analysis domain.

Data from 70 surface in situ and seven radiosonde
observational stations (Figure 1) within the domain,
provided by the National Agency for Meteorology,
Hydrology and Environment Monitoring of Mongolia,
were analyzed for the period 1981–2010. The locations
of the observational station with their elevation are also
shown in the figure. The topography clearly shows the
complex spatial heterogeneities in the regional physiog-
raphy. The mean distance between the stations is about
107.1 km and the mean elevation of the in situ obser-
vational sites is 1348 m (Table 2). The basic statistics
regarding the station and model distances and elevations
are listed in Table 2. The surface air temperature data
from China and Russia located near the border of Mon-
golia were also used for statistical correction.

3.2. Dynamical downscaling

In order to relate the large-scale weather pattern to the
regional scale based on physics, dynamical downscaling

Figure 5. The first and second nested domains for dynamical down-
scaling with a horizontal resolution of 60 × 60 km, and 20 × 20 km,

respectively.

Table 2. General distance and height from observation sites and
model grid system.

Distance (km) Height (m)

Mean Maximum Minimum Mean Maximum Minimum

Station 107.1 228.6 10.8 1348 2255 630
Model 20.0 20.0 20.0 1491 3109 537

is necessary. RCMs are the ultimate useful tool for the
informative downscaling approach. The WRF model used
as RCM in this study was designed to be a flexible, state-
of-the–art atmospheric simulation system.

In order to reproduce the fine-scale air temperature
in Mongolia, dynamical downscaling was performed
using the WRF model with the initial and boundary
conditions from the NCEP/NCAR reanalysis II data with
6-h intervals from 1981 to 2010. The integration was
restarted each month of each year and the 3 days prior to
the first day of each month were assigned as the spin-
up period for each simulation and removed from the
analysis. One-way nesting system was applied, having
two nested domains with a horizontal grid space of 60
and 20 km. The physical options for the WRF simulation
include the microphysics WSM 6-class by Hong and
Lim (2006), Rapid radiation transfer model long-wave
radiation scheme by Mlawer et al. (1997), Dudhia short-
wave radiation scheme by Dudhia (1989), Noah land
surface model by Ek et al. (2003), Kain-Fritsch cumulus
parameterization scheme by Kain (2004) and Yonsei
University boundary layer scheme by Hong et al. (2006).
In addition, the model configurations are given in Table 3.
USGS 24-category land use categories (Table 4) were
ingested into the Noah land surface model in WRF.

3.3. Statistical correction

Although WRF can provide information on various
aspects of the weather and climate in the area of interest,
the model results contain a certain amount of bias and
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Table 3. Configuration of the WRF model with one-way nesting
system.

Model configuration WRFV3 description

Dynamic core ARW (Advanced Research WRF)
Horizontal coordinate Arakawa C grids
Horizontal resolution Domain 1 60 × 60 km

Domain 2 20 × 20 km
Vertical coordinate Mass-based following eta
Vertical resolution Domain 1, 2 28 levels (top

pressure-50 hPa)
Physical scheme Microphysics scheme WSM 6-class

graupel
Cumulus
parameterization

Kain-Fritsch

Planetary boundary
scheme

YSU

Land surface model Noah land
surface model

Short-wave radiation
scheme

Dudhia scheme

Long-wave radiation
scheme

RRTM radiation

Table 4. USGS 24-category land use categories in WRF.

Land use category Land use description

1 Urban and Built-Up Land
2 Dryland Cropland and Pasture
3 Irrigated Cropland and Pasture
4 Mixed Dryland/Irrigated Cropland and Pasture
5 Cropland/Grassland Mosaic
6 Cropland/Woodland Mosaic
7 Grassland
8 Shrubland
9 Mixed Shrubland/Grassland

10 Savanna
11 Deciduous Broadleaf Forest
12 Deciduous Needleleaf Forest
13 Evergreen Broadleaf
14 Evergreen Needleleaf
15 Mixed Forest
16 Water Bodies
17 Herbaceous Wetland
18 Wooden Wetland
19 Barren or Sparsely Vegetated
20 Herbaceous Tundra
21 Wooded Tundra
22 Mixed Tundra
23 Bare Ground Tundra
24 Snow or Ice

errors. In order to reduce these systematic biases, a
method similar to that developed by Ahn et al. (2012)
was used in this work.

Systematic biases were divided into two components,
mean and perturbation parts that were statistically cor-
rected by different methods independently.

For the statistical correction, gridded observation (Ao,
the same horizontal resolution as the model) by objective
analysis (Cressman, 1960) and the model output (Am),
which are divided into two parts, are expressed as

follows:
Ao = Ao + A

′
o (1)

Am = Am + A
′
m (2)

where ( ) and ( ′) represent the mean and perturbation
parts, respectively, in each of the 156 × 117 grid points.
The monthly mean temperature for each month in a span
of 1981–2010 and the perturbation part in each month
of every year in the span were calculated in both the
observation and the model.

The mean bias corrected value
(
C m

)
is expressed as

shown by Ahn et al. (2012),

C m = (1 − W ) × Am1 + Am2

2
+ W × Am2 (3)

W = e
−

{(
h−981

hσ

)2
/4

}
(4)

where Am1 = Am + Ad , Am2 = Am + (ao − am) calcu-
lated at each grid 156 × 117 in the domain, and subscripts
o and m denote the observation and model output, respec-
tively. Ad is the difference in the mean parts of the
observation and model. The mean values averaged over
the domain (Figure 1) from the mean parts of the model
output and gridded observation by the objective analysis
(Cressman, 1960) were denoted as am and ao, respec-
tively. The simple objective interpolation method cannot
properly represent the effect of elevation. Moreover, to
preserve the change of temperature caused by landform
more accurately in the mean values of am and ao, W
is expressed as a function of height, and the Gaussian
function is used for W . In addition, h is the height from
sea level and hσ is the standard deviation of the height
throughout all of Mongolia. The mean correction con-
sists of the two terms expressed in Equation (3): the first
expresses the values of monthly mean temperature and
the second provides information of detailed topography
on the temperature pattern. Detailed explanation for the
method is described in Ahn et al. (2012).

In the cold season, as described in Equation (4),
temperature inversion prevails in Mongolia. In case of
temperature inversion, temperature is a function of height
as follows (Erdenesukh, 2008):

T (η) = To − γ η (5)

where γ is the lapse rate for air, η the height in inver-
sion layer, and To the observed surface temperature
at the grid points. Based on Equation (5), Erdenesukh
(2008) expressed T (η) = f (T o ,γ ,η) using multiple lin-
ear regression. According to the inversion features in
Mongolia, Equation (5) remains valid throughout the
whole cold season according to the monthly vertical
mean temperature distribution. In case of the inversion,
Equation (3) reduced as follows:

C m = (1 − W ) × Am1 + Am2

2
+ �T (6)

where �T = T (η) − T o , T (η) from Erdenesukh (2008).
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In order to embed the inversion into the temperature
pattern, the amount of temperature inversion was used in
the correction as in Equation (6) instead of the second
term of Equation (3).

For the perturbation correction (C ′), SOM, a kind of
artificial neural network (ANN) was used. Several studies
that focused on the temperature correction produced by
RCM suggested that a nonlinear statistic method shows
better performance than a linear statistic method (Xu,
1999; Schoof and Pryor, 2001; Ahn et al., 2012). Espe-
cially, Ahn et al. (2012) concluded that variation would
be highly affected by SOM applied to perturbation values.

SOM can be roughly divided into three categories,
each based on a different philosophy (Kohonen, 1990):
feedforward networks, feedback networks and self-
organizing. Feedforward networks transform sets of
input layers into sets of output layers. In other words,
according to Kohonen’s rule, the similarity between
created arbitrary weight (Wi) and input layer (Ai) is calcu-
lated using Euclidian distance (Ahn et al., 2012). In this
step, the smallest value is called the ‘winner neuron’. And
then, winner neuron gets an opportunity to be trained as
following:

Wi (t + 1) = Wi (t) + B (Ai − Wi (t)) (7)

Here, the learning rate (B ) controls when the winner
neuron’s weight calculated by Euclidian distance is
updated. A low learning rate has the disadvantage of a
slow training speed but the advantage of high accuracy,
and vice versa in the case of a high learning rate.
In the third category, neighbouring cells in a neural
network compete in their activities by means of mutual

lateral interactions, and develop adaptively into specific
detectors of different signal pattern. This is called
competitive and unsupervised method, or SOM. In other
words, the neurons within the neighbourhood radius of
the winner neuron, so called ‘resemble neurons’, are
adjusted using a Gaussian function (Ahn et al., 2012).

In this work, the perturbation of a model (A′
m ) with

156 × 117 grids and the perturbation of observation (A′
o)

were used as input layers, the initial learning rate was
assigned as 0.7, and a Gaussian function was used as a
radius adjustment function.

4. Results

4.1. Monthly mean temperature field

The monthly temperature of January and July averaged
over a 30-year time period is given in Figures 6 and 7,
respectively, for (a) observation interpolated by the
objective analysis to model grid points (G_OBS), (b)
uncorrected WRF simulation (U_WRF) and (c) statis-
tically corrected simulation results (C_WRF). G_OBS
is produced by the objective analysis. Thus, the spatial
heterogeneities of the interested area’s physiography
are hardly embedded in G_OBS. As shown in Figures
6(a) and 7(a), a relatively warm temperature divides
the Altai mountain ranges into two parts, as well as the
Khangai mountain ranges located in the central part of
Mongolia. The objectively interpolated warm tempera-
ture existing near the west southern boundary, which is
obviously an unrealistic temperature, is mainly due to
the simple objective analysis with sparse observational

(a) (b) (c)

Figure 6. Monthly mean temperature distribution for January, averaged over thirty years (1981–2010): (a) gridded observation by objective
analysis (G_OBS), (b) simulated by WRF (U_WRF), and (c) corrected WRF (C_WRF).

(a) (b) (c)

Figure 7. Monthly mean temperature distribution for July, averaged over thirty years (1981–2010): (a) gridded observation by objective analysis
(G_OBS), (b) simulated by WRF (U_WRF), and (c) corrected WRF (C_WRF).
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network (Figure 1). Nevertheless, the G_OBS pattern for
statistical correction expressed the overall temperature
distribution over Mongolia.

On the contrary, the results simulated by WRF with a
horizontal resolution of 20 km expressed a more detailed
pattern of temperature over the whole area of interest,
especially over the mountain areas. However, the sim-
ulated results included incredulous values compared to
the G_OBS pattern during both January and July. Par-
ticularly, the relative cold temperature in G_OBS near
Uvs Lake, which is the biggest lake in Mongolia and is
located in the northwest of Mongolia, was not simulated
reasonably (Figures 6(b) and 7(b)). These shortcomings
were mainly due to the systematic biases in the model.

The corrected results based on dynamical down-
scaling and statistical corrections are shown in
Figures 6(c) and 7(c). After the statistical correction,
C_WRF provided the detailed temperature distribution
obtained in U_WRF, as well as the general pattern shown
in G_OBS. The advantage of dynamical downscaling in

which complex topography is evaluated was preserved
in the monthly mean temperature of C_WRF.

Scatter plots of monthly mean temperature in July
and January with respect to altitude are shown in
Figures 8 and 9, respectively, for in situ observation,
G_OBS, U_WRF and C_WRF. Figure 8 shows that
G_OBS has spread variations with height unlike the in
situ observation at different altitudes since the effect
of topography is lost during the horizontal interpolation
by the objective analysis. As shown in Figure 8(c),
U_WRF temperature decreases with increasing height as
the in situ observations (Figure 8(a)). However, there is
a systematic warm bias between the regressed lines of
the in situ observations and U_WRF. After application
of the correction method, the bias was reduced and
C_WRF temperature approached relatively close to the
in situ observation (Figure 8(d)).

However, the results were different during winter
and the lapse rate of the monthly mean temperature
became negative, as shown in Figure 11(a). In U_WRF

(a) (b)

(c) (d)

Figure 8. Scatter plots of monthly mean temperature against elevation over Mongolia for July: (a) in situ observation at stations, (b) G_OBS, (c)
U_WRF and (d) C_WRF. Black closed rectangles and gray closed circles are observed and simulated temperature of G_OBS, U_WRF, C_WRF,

respectively. Black and gray lines are regressed by least square for observation and simulation for each.
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(a) (b)

(c) (d)

Figure 9. Scatter plots of monthly mean temperature against elevation over Mongolia for January: (a) in situ observation at stations, (b) G_OBS,
(c) U_WRF and (d) C_WRF. Black closed rectangles and gray closed circles are observed and simulated temperature of G_OBS, U_WRF and

C_WRF, respectively. Black and gray lines are regressed by least square for observation and simulation for each.

and C_WRF, however, the lapse rates were positive.
This discrepancy was due to the model’s insufficient
simulation of the temperature inversion. The inversion
correction was therefore done for the cold season and the
results are presented in the next section.

4.2. The inversion corrected monthly mean
temperature

Figure 9 shows that inversion correction is necessary for
proper reproduction of temperature in regions with strong
inversion such as Mongolia, particularly during the cold
season, in addition to statistical correction.

In Figure 10, the monthly mean temperature for
January is given for G_OBS, U_WRF, C_WRF results by
Equation (3) and WRF results with inversion correction
(IC_WRF) by Equation (6). The U_WRF and C_WRF
results were much warmer than the observation within the
deep inversion area, especially near Uvs Lake. However,
after the inversion correction, it became colder than
C_WRF and the area-averaged temperature decreased by
1.2 ◦C in IC_WRF.

In order to illustrate the improvement in the simu-
lated temperature due to the inversion correction, a scatter
plot of the monthly mean vertical temperature in the
northwestern part of Mongolia, from 91◦E to 97◦E and
from 48◦N to 51◦N, where deep inversion occurs dur-
ing the cold season, is shown in Figure 11. In the figure,
the vertical distribution of the monthly mean tempera-
ture in U_WRF and C_WRF was very different from
the in situ observation at the stations. As a result of
the inversion correction, the vertical distribution temper-
ature in the low-lying selected area approached closely to
the observation, as in IC_WRF. Over the weak inversion
area, the distribution was already relatively close to the
observation in both U_WRF and C_WRF (Figure 12).

4.3. Verification of the results with the observation

In this section, the results of U_WRF, C_WRF and
IC_WRF are compared with the in situ observations
using statistical analysis such as anomaly correlation
coefficient (ACC), pattern correlation coefficient (PCC)
(pattern_cor in NCL, 2012), root mean square difference

 2013 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. (2013)
on behalf of the Royal Meteorological Society.



MONGOLIAN TEMPERATURE REPRODUCTION USING WRF AND A CORRECTION METHOD

(a) (b)

(c) (d)

Figure 10. Monthly mean temperature distribution for January: (a) G_OBS, (b) U_WRF, (c) C_WRF and (d) inversion corrected WRF (IC_WRF).

(a) (b) (c)

Figure 11. Scatter plots of monthly mean temperature against altitude within deepest inversion area, which covers from 48◦N to 51◦N and from
91◦E to 97◦E for January: (a) U_WRF, (b) C_WRF and (c) IC_WRF. Gray circles are model results, and black rectangles are in situ observations.

(RMSD), normalized standard deviation (NSTD) and a
Taylor diagram (Taylor, 2001).

ACC, RMSD and NSTD are expressed as:

ACC =

N∑
i=1

o
′
ij f

′
ij

[
N∑

i=1

(
o

′
ij

)2 N∑
i=1

(
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′
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)2
] 1

2

(8)

RMSD =

√√√√√√
N∑

i=1

(
oij − fij

)2

N
(9)

NSTD = fσ
oσ

(10)

where o
′
ij = oij − oj , f

′
ij = fij − fj , observation (o)

and output (f ) of U_WRF, C_WRF and IC_WRF,
respectively at each grid point. ( ) and (σ ) are
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(a) (b) (c)

Figure 12. Scatter plots of monthly mean temperature against altitude within the weak inversion area from 45◦N to 47◦N and from 91◦E to 95◦E
for January: (a) U_WRF, (b) C_WRF and (c) IC_WRF. Gray circles are model results, and black rectangles are in situ observations.

climatology and standard deviation, respectively, for the
period 1981–2010. N and j are the number of years and
grid points, respectively.

PCC-RMSD is shown in Figure 13, which comprises
30-year means for each month. The open circles and
gray closed circles and the rectangles indicate U_WRF,
IC_WRF and C_WRF, respectively. The model results
nearest to the 70 stations (Figure 1) were compared
to the observation. Throughout the whole year, except
February and March, RMSD was decreased and PCC
became close to 1.0 in IC_WRF. As shown in the figure,
RMSD and PCC in U_WRF were high and low relative
to the corrected results, respectively. In addition, RMSD
and PCC of IC_WRF in the warm season were similar to
C_WRF due to the absence of any inversion effect during
the season in Mongolia.

Figure 14 shows a Taylor diagram representing the
temporal correlation and NSTD between the two WRF
results and the in situ observed anomalous surface air
temperature. The numbers indicate months, the gray

Figure 14. Taylor diagram of anomalous air temperature over Mongolia
for January to December, 1981–2010. Gray and black colours are

U_WRF and C_WRF, respectively.

Figure 13. Pattern correlation versus RMSD of monthly mean temperature for U_WRF, C_WRF and IC_WRF.

 2013 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. (2013)
on behalf of the Royal Meteorological Society.



MONGOLIAN TEMPERATURE REPRODUCTION USING WRF AND A CORRECTION METHOD

Table 5. Annual mean basic statistics for the anomaly cor-
relation coefficient (ACC), and root mean square difference
(RMSD) derived from anomaly surface air temperature nearest

to the stations.

U_WRF C_WRF

ACC 0.5 0.8
RMSD (◦C) 2.0 1.0

closed circle U_WRF, and the red black C_WRF. ACC
of U_WRF was below the 95% significance level for
August and between 95 and 99% for January, July and
December, whereas all the ACCs of C_WRF were above
the 99% significance level. NSTD fell within the range of
0.8–1.3 after correction. In addition, as shown in Table 5,
ACC was 0.5 in U_WRF but was improved by 0.3–0.8,
while RMSD was decreased to 1.0 ◦C from 2.0◦. Thus,
the correction method used in this study was also useful
for the temporal variation of the temperature anomaly.

Figure 15 shows RMSD of the monthly surface mean
temperature from 1981 to 2010 in both gridded and in situ
station points. RMSD was within 3.0–6.5 ◦C in U_WRF
for all months but fell to 1.8–3.0 ◦C in C_WRF, and
was further decreased by 0.3–0.4 ◦C after inversion cor-
rection. The monthly mean temperatures averaged over
the 70 in situ stations (Figure 1) are given in Table 6.
The U_WRF, C_WRF and IC_WRF temperatures in the
table are the values averaged over the 70 grid points,
each of which is nearest from each in situ observation
site. U_WRF had a warm bias in January and December,
but a cold bias during February to May. In general, the
U_WRF result showed a cold bias in Mongolia. How-
ever, after statistical correction in C_WRF, the annual
mean temperature increased to 1.8 ◦C from −1.2 ◦C.

After inversion correction, the annual mean temperature
became 0.9 ◦C.

5. Discussion and conclusions

A fine spatial temperature distribution over Mongolia,
which cannot be obtained by sparsely distributed obser-
vational data due to the country’s complex topography,
is presented in this study using dynamical downscaling
and statistical correction with consideration for the atmo-
spheric inversion effect. The gridded temperature pattern
objectively analyzed by 70 meteorological stations did
not contain the physiographical characteristics and het-
erogeneities of the area of interest.

On the contrary, the result from the relatively fine-
resolution WRF model presented a detailed structure
of temperature such as terrain-following features since
the model considered the topographical effect. In
order to reproduce the air temperature distribution for
Mongolia, WRF was performed from 1981 to 2010,
using NCEP/NCAR reanalysis II data as the initial and
boundary conditions. A statistical correction was applied
taking advantage of the WRF model in order to remove
the systematic bias of the model.

In order to remove the systematic biases in the model,
statistical correction was applied for both mean and per-
turbation parts. For correction of the mean part, both the
inversion effect and the mean model bias were considered
in the correction. As the temperature inversion simulated
by the model was much weaker than the observation
derived from radiosonde data, temperature inversion
was considered in the correction. For the perturbation
correction, SOM, an ANN technique developed,
was used.

Figure 15. RMSD of annual mean temperature for 30 years (1981–2010) in gridded (Grid) and station point (Point).
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Table 6. Summary of the monthly mean temperatures averaged over 70 stations.

January February March April May June

Obs −20.8 −16.5 −7.5 3.1 11.0 16.5
U_WRF −19.1 −17.9 −13.1 −3.3 8.3 16.4
C_WRF −19.1 −14.8 −6.1 4.3 12.3 17.8
IC_WRF −20.6 −17.5 −8.2 4.3 12.3 17.8

July August September October November December

Obs 18.8 16.6 10.2 1.4 −9.6 −17.7
U_WRF 20.0 16.7 9.6 1.0 −9.9 −16.9
C_WRF 20.1 17.9 11.5 2.7 −8.3 −16.3
IC_WRF 20.1 17.9 11.5 1.4 −10.0 −17.8

The study results revealed that the statistical and inver-
sion correction methods used are applicable when there
is strong inversion at the atmospheric surface layer.
After the corrections, the pattern correlations between
the models and the in situ observation were increased,
and RMSD decreased, indicating the effectiveness of the
developed correction methods. In addition, the tempo-
ral ACC was also increased after the application of the
statistical correction. These results imply that our cor-
rection method improves not only spatial patterns with
fine resolution but also the time-varying temperature vari-
ance over Mongolia. The study methodology’s successful
reproduction of gridded climate information with a fine-
scale that reflected the local climate characteristics over
Mongolia demonstrated its potential advantage in over-
coming any deficiency in or paucity of ground-based
observation.
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